If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-39X+20=0
a = 1; b = -39; c = +20;
Δ = b2-4ac
Δ = -392-4·1·20
Δ = 1441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-\sqrt{1441}}{2*1}=\frac{39-\sqrt{1441}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+\sqrt{1441}}{2*1}=\frac{39+\sqrt{1441}}{2} $
| 7x-9x2=5x-5 | | -3-39e=11e-23 | | 2u-24=6u-12 | | 35+(10p+31)=13p+41 | | -3v/5=15 | | 5x+36=-11 | | 15=-4x+9+2x | | (y-31)+y=y+50 | | -3-39e=11e-25 | | -9c-3=7c-19 | | (w+1)+(w+2)=w+32 | | -15=-5/2u | | 8v=-16/5 | | (s-30)+(s+2)=s+37 | | 3(4x-2)=5(x-1)=23 | | 0.7(10x+16)=4.3(0.2x+5) | | (a-14)+a=a+37 | | 6b=2b-8,b | | -78=6(c-93)-78 | | C(n)=20-10/n | | (t-12)+(t+2)=t+32 | | 3x-2x+7=20 | | (a-9)+(a-45)=a+48 | | -3x+6(1+4x)=-99 | | 18x+6=26x-2 | | 42e+18=-24+98e | | 2v+v+2v+3v=8 | | A=32b=-19 | | 3(4x-5)-2x=25 | | 6y-2y=30 | | 2x+25=5-30 | | 7x+7+x=180 |